• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
Link to publication• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ?
Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Abstract. Combustion control and optimization is of great importance to meet future emission standards in Diesel engines: increase of bmep at high loads and extension of the operating range of advanced combustion modes seem to be the most promising solutions to reduce fuel consumption and pollutant emissions at the same time. Within this context, detailed CFD tools are required to predict the different involved phenomena such as fuel-air mixing, unsteady diffusion combustion and formation of noxious species. Detailed kinetics, consistent spray models and high quality grids are necessary to perform predictive simulations which can be used either for design or diagnostic purposes. In this work, the authors present a comprehensive approach which was developed using an open-source CFD code. To minimize the pre-processing time and preserve results accuracy, algorithms for automatic mesh generation of spray-oriented grids were developed and successfully applied to different combustion chamber geometries. The Lagrangian approach was used to describe the spray evolution while the combustion process is modeled employing detailed chemistry and, eventually, considering turbulence/chemistry interaction. The proposed CFD methodology was first assessed considering inert and reacting experiments in a constant volume vessel, where operating conditions typical of heavy duty Diesel Engines were reproduced. Afterwards, engine simulations were performed considering two different load points and two piston bowl geometries, respectively. Experimental validation was carried out by comparing computed and experimental data of in-cylinder pressure, heat release rate ...