Aspirated compressor is a promising design concept to enhance the power density of the compression system; however, with regard to the rear stages of multistage aspirated compressor, the blade is fairly thin. Limited by the mechanical constraints, it seems impractical to implement the boundary layer suction on the blade suction surface. So the question arising is can we replace the blade suction surface with other feasible flow control methods without implementing extra device on the blade? To address this issue, a compound flow control method, composed of the endwall boundary layer suction and tandem blade, is proposed. The design philosophy is to utilize the EBLS to suppress the three-dimensional corner stall while to use the tandem blade to control the two-dimensional airfoil flow separation. The endwall boundary layer suction is barely implemented in the forward blade, whereas the corner flow in the rear blade is restrained by the flow through the gap between the forward and rear blades. The preliminary implement strategy of the compound flow control was presented and then applied in the design of a highly loaded aspirated compressor outlet vane. Three-dimensional numerical simulations were carried out to validate its effectiveness with different inlet boundary layer distributions. Both flow fields in the outlet vane and its loss characteristics were analyzed. The results show that, by applying the compound flow control, the outlet vane could not only achieve an aggressive loading without incurring large-scale separation at the design point but also have a considerable available incidence range. Due to the implement of the endwall boundary layer suction, the tandem blade can bring out its full potential in the two-dimensional flow control. Moreover, owing to the flow through the gap of the forward and rear blades, the aspiration flow rate required for the suppression of the three-dimensional corner stall can be reduced.