Tandem blade configurations are said to being able to outperform conventional single blades in terms of loss behaviour and flow turning. The work presented here is supported by experimental investigations which were conducted at a 2D linear stator cascade at the Chair for Aero Engines at the Technische Universität Berlin. Two different tandem blade configurations with a different load split are examined and compared against a conventional single reference blade. Multi-coloured oil flow visualisation complemented by wake flow measurements show the development of the secondary flow structures and enable a thorough understanding of the impact of varying tangential displacement for tandem blades. The results show that tandem blades can reduce the total pressure losses, especially in the midspan region, which also results in smaller overall values. In addition, the incidence angle variation has shown that the working range of the tandem vanes exceeds the originally designed working range of the single reference blade. The tandem configurations still allow flow guidance at stall condition and prove the capability of the concept.
This investigation discusses the impact of a non-steady outflow condition on the compressor stator flow in an annular cascade which is periodically chocked through a rotating disc in the wake, to simulate the expected conditions for a pulsed detonation engine (PDE). A 2D controlled diffusion airfoil of the highly loaded linear stator cascade by [1] has been transferred to the annular compressor test rig to compare results under non-steady conditions via multi-colored oil flow visualization on the suction side and pressure measurements in the wake of the blades. Three different Strouhal numbers of the choking device are investigated and analyzed by phase averaged pressure measurements downstream of the stator to visualize the unsteady flow characteristics. Triggered by the changed incidence angle due to the choking, separation on the suction side and in the hub region form a periodic event depending on the position of the blockage device. Active flow control (AFC) is implemented by means of side wall actuation at the hub to improve flow conditions. Pressure measurements show that the turning of the blades can be raised and a static pressure rise is gained by the AFC while periodic choking is active.
Active flow control is a powerful option to ensure secure operation and enhancement of the performance of axial compressors. To achieve these goals for aerodynamically highly loaded compressor blade profiles even under disturbed conditions, the magnitude of the actuation needs to be adjusted by a closed-loop controller. To this end, sensors must be placed at some meaningful positions at the surface of the blades giving information about the flow situation inside the passages. The sensor information can then lead to surrogate control variables to close the loop. Often, good sensor positions are unknown initially and therefore chosen naively or experience-driven. To obtain more informative surrogate control variables, a different approach is chosen here. Starting with a highly instrumented blade inside a linear stator cascade, featuring 16 pressure gauges in an area which is suspected to lead to high information content with respect to detrimental flow separations at the sidewalls, a Principal Component Analysis is done. The principal components provide valuable information about where and how intensively the flow is influenced by the actuation. This is validated by comparison with the results of oil flow visualizations and wake measurements. The goal is to find a linear combination of as few sensors as possible to provide a meaningful input for the closed-loop controller. As experiments are conducted up to Ma = 0.8, the signal-to-noise ratio becomes a critical issue. For this reason, specifically weighted data are introduced here. A linear combination of sensor data is obtained, describing the main effects of the actuation with an almost linear mapping. For the given set of sensors, that linear combination achieves a maximum signal-to-noise ratio, which makes it well suited as a control variable. The practical usefulness of the control variable within a robust ℋ∞-flow controller is verified in experiments in a high speed stator cascade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.