The use of adhesive bonding in diverse industries such as the automotive and aerospace sectors has grown considerably. In structural construction, adhesive joints provide a unique combination of low structural weight, high strength and stiffness, combined with a relatively simple and easily automated manufacturing method, characteristics that are ideal for the development of modern and highly efficient vehicles. In these applications, ensuring that the failure mode of a bonded joint is cohesive rather than adhesive is important since this failure mode is more controlled and easier to model and to predict. This work presents a numerical technique that enables the precise prediction of the bonded joint’s behavior regarding not only its failure mode, but also the joint’s strength, when inorganic fillers are added to the adhesive. To that end, hollow glass particles were introduced into an epoxy adhesive in different amounts, and a numerical study was carried out to simulate their influence on single lap joint specimens. The numerical results were compared against experimental ones, not only in terms of joint strength, but also their failure pattern. The neat adhesive, which showed 9% and 20% variations in terms of failure load and displacement, respectively. However, looking at the doped configurations, these presented smaller variations of about 2% and 10% for each respective variable. In all cases, by adding glass beads, crack initiation tended to change from adhesive to cohesive but with lower strength and ductility, correctly modeling the general experimental behavior as intended.