The escalating demand for natural resources within the construction industry is progressing upward. At the same time, however, there is a great concern regarding the depletion of these resources. This review paper emphasizes the significance of utilizing alternative aggregate materials in concrete. Particularly, it aims to explore replacing natural sand with stone dust. On the one hand, the depletion of primary sources of natural sand worldwide, combined with environmental and ecological concerns, drives the adoption of alternative aggregate materials for sustainable concrete construction. On the other hand, stone dust, a waste from the quarrying industry, offers a cost-effective and practical solution for producing concrete. This article presents a comprehensive literature review of the main trends in utilizing stone dust in recycled aggregates in the past decade and its influence on concrete properties. It addresses critical research questions regarding the physical and chemical properties of stone dust aggregates compared to natural sand; the impact of stone dust on the workability, mechanical, physical, and durability properties of recycled concrete; and the potential reduction of environmental impacts in terms of energy consumption and emissions through the replacement of natural sand with stone dust. Ultimately, this paper proposes future investigative work based on identified research gaps.