The effectiveness of a previously developed unsintered hydroxyapatite (uHA) and poly(L-lactic acid) (PLLA) hydrophilic membrane as a resorbable barrier for guided bone regeneration (GBR) was evaluated. Critical-size 8-mm diameter bone defects were surgically generated in the parietal bones of 24 12-week-old male Wistar rats, which were then divided into three groups in which either a uHA/ PLLA or a collagen membrane or no membrane (control) was placed onto the bone defect. Following sacrifice of the animals 2 or 4 weeks after surgery, bone defects were examined using microcomputed tomography and histological analysis. Bone mineral density, bone mineral content, and relative bone growth area values 2 or 4 weeks after surgery were highest in the uHA/PLLA group. Four weeks after surgery, the relative bone growth area in the uHA/PLLA group was larger than that in the collagen group. The resorbable uHA/PLLA membrane is thus potentially effective for GBR.