The purpose of this study is to evaluate the osteoconductivity of three different bone substitute materials: α-tricalcium phosphate (α-TCP), (β-TCP), and hydroxyapatite (HA), combined with or without simvastatin, which is a cholesterol synthesis inhibitor stimulating BMP-2 expression in osteoblasts. We used 72 Wistar rats and prepared two calvarial bone defects of 5 mm diameter in each rat. Defects were filled with the particles of 500-750 μm diameter combined with or without simvastatin at 0.1 mg dose for each defect. In the control group, defects were left empty. Animals were divided into seven groups: α-TCP, β-TCP, HA, α-TCP with simvastatin, β-TCP with simvastatin, HA with simvastatin, and control. The animals were sacrificed at 6 and 8 weeks. The calvariae were dissected out and analyzed with micro CT. The specimens were evaluated histologically and histomorphometrically. In α-TCP group, the amount of newly formed bone was significantly more than both HA and control groups but not significantly yet more than β-TCP group. Degradation of α-TCP was prominent and β-TCP showed slower rate while HA showed the least degradation. Combining the materials with Simvastatin led to increasing in the amount of newly formed bone. These results confirmed that α-TCP, β-TCP, and HA are osteoconductive materials acting as space maintainer for bone formation and that combining these materials with simvastatin stimulates bone regeneration and it also affects degradability of α-TCP and β-TCP. Conclusively, α-TCP has the advantage of higher rate of degradation allowing the more bone formation and combining α-TCP with simvastatin enhances this property.
Abstract. Simvastatin, a cholesterol synthesis inhibitor, enhances BMP2 expression in osteoblasts. The purpose of the present study was to examine whether simvastatin stimulates bone regeneration when combined with calcium sulfate as a carrier. Critical-sized bone defects in rat calvaria were treated with calcium sulfate or with combination of 1 mg simvastatin and calcium sulfate. In the combination group, although the least amount of bone formation with intense soft tissue inflammation was observed at 2 and 4 weeks, remarkable bone formation was evident at 8 weeks. Conclusively, the combination of simvastatin and calcium sulfate stimulated bone regeneration in spite of the inflammatory response.
When combined with alpha-TCP particles, 0.1 mg simvastatin is the optimal dose for stimulation of the maximum bone regeneration in rat calvarial defects without inducing inflammation and it could be applied as an effective bone graft material.
Peer Review History: PLOS recognizes the benefits of transparency in the peer review process; therefore, we enable the publication of all of the content of peer review and author responses alongside final, published articles. The editorial history of this article is available here:
We have previously reported that healing of rat calvarial defects was enhanced by application of alpha tricalcium phosphate (alphaTCP) combined with simvastatin, a cholesterol synthesis inhibitor. The purpose of the present study was to investigate the cellular and molecular mechanisms in this phenomenon. Rat calvarial defects were grafted with alphaTCP with or without simvastatin or left untreated. Animals were sacrificed on 3, 7, 10, 14, and 21 days postoperatively and histological changes in the defect region were assessed. Gene expression patterns were examined by RT-PCR. Proliferation and migration of osteoprogenitor cells from the dura mater were increased in simvastatin group from day 3 to day 10 (p < 0.01). New bone formation was significantly increased in simvastatin group on day 14 and day 21 (p < 0.01). BMP-2 expression was significantly higher in simvastatin group on day 3 and day 14 (p < 0.05) and maintained until day 21. Increased upregulation of TGF-beta1 was also observed in the simvastatin group on day 7 (p < 0.05) which was maintained until day 14. These findings suggest that the proliferation and recruitment of osteoprogenitor cells were critical steps in early stage of bone healing and that these steps were enhanced by TGF-beta1 and BMP-2, which were stimulated by simvastatin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.