1 The e ects of several phosphodiesterase (PDE) inhibitors on the L-type Ca current (I Ca ) and intracellular cyclic AMP concentration ([cAMP] i ) were examined in isolated rat ventricular myocytes. The presence of mRNA transcripts encoding for the di erent cardiac PDE subtypes was con®rmed by RT ± PCR. 2 IBMX (100 mM), a broad-spectrum PDE inhibitor, increased basal I Ca by 120% and [cAMP] i by 70%, similarly to a saturating concentration of the b-adrenoceptor agonist isoprenaline (1 mM). However, MIMX (1 mM), a PDE1 inhibitor, EHNA (10 mM), a PDE2 inhibitor, cilostamide (0.1 mM), a PDE3 inhibitor, or Ro 20-1724 (0.1 mM), a PDE4 inhibitor, had no e ect on basal I Ca and little stimulatory e ects on [cAMP] i (20 ± 30%). 3 Each selective PDE inhibitor was then tested in the presence of another inhibitor to examine whether a concomitant inhibition of two PDE subtypes had any e ect on I Ca or [cAMP] i . While all combinations tested signi®cantly increased [cAMP] i (40 ± 50%), only cilostamide (0.1 mM)+Ro20-1724 (0.1 mM) produced a signi®cant stimulation of I Ca (50%). Addition of EHNA (10 mM) to this mix increased I Ca to 110% and [cAMP] i to 70% above basal, i.e. to similar levels as obtained with IBMX (100 mM) or isoprenaline (1 mM). 4 When tested on top of a sub-maximal concentration of isoprenaline (1 nM), which increased I Ca by (&40% and had negligible e ect on [cAMP] i , each selective PDE inhibitor induced a clear stimulation of [cAMP] i and an additional increase in I Ca . Maximal e ects on I Ca were &8% for MIMX (3 mM), &20% for EHNA (1 ± 3 mM), &30% for cilostamide (0.3 ± 1 mM) and &50% for Ro20-1724 (0.1 mM). 5 Our results demonstrate that PDE1-4 subtypes regulate I Ca in rat ventricular myocytes. While PDE3 and PDE4 are the dominant PDE subtypes involved in the regulation of basal I Ca , all four PDE subtypes determine the response of I Ca to a stimulus activating cyclic AMP production, with the rank order of potency PDE44PDE34PDE24PDE1.