Monolayer phosphorene provides a unique two-dimensional (2D) platform to investigate the fundamental dynamics of excitons and trions (charged excitons) in reduced dimensions. However, owing to its high instability, unambiguous identification of monolayer phosphorene has been elusive. Consequently, many important fundamental properties, such as exciton dynamics, remain underexplored. We report a rapid, noninvasive, and highly accurate approach based on optical interferometry to determine the layer number of phosphorene, and confirm the results with reliable photoluminescence measurements. Furthermore, we successfully probed the dynamics of excitons and trions in monolayer phosphorene by controlling the photo-carrier injection in a relatively low excitation power range. Based on our measured optical gap and the previously measured electronic energy gap, we determined the exciton binding energy to be ,0.3 eV for the monolayer phosphorene on SiO 2 /Si substrate, which agrees well with theoretical predictions. A huge trion binding energy of ,100 meV was first observed in monolayer phosphorene, which is around five times higher than that in transition metal dichalcogenide (TMD) monolayer semiconductor, such as MoS 2 . The carrier lifetime of exciton emission in monolayer phosphorene was measured to be ,220 ps, which is comparable to those in other 2D TMD semiconductors. Our results open new avenues for exploring fundamental phenomena and novel optoelectronic applications using monolayer phosphorene. Keywords: exciton; monolayer phosphorene; optical injection; two-dimensional materials INTRODUCTION Phosphorene is a recently developed two-dimensional (2D) material that has attracted tremendous attention owing to its unique anisotropic manner 1-6 , layer-dependent direct band gaps 7,8 , and quasi-onedimensional (1D) excitonic nature 9,10 , which are all in drastic contrast with the properties of other 2D materials, such as graphene 11 and transition metal dichalcogenide (TMD) semiconductors [12][13][14] . Monolayer phosphorene has been of particular interest in exploring technological applications and investigating fundamental phenomena, such as 2D quantum confinement and many-body interactions 9,15 . However, such unique 2D materials are unstable in ambient conditions and degrade quickly 8,16 . Particularly, monolayer phosphorene is expected to be much less stable than few-layer phosphorene 16 , hence making its identification and characterization extremely challenging. There is a huge controversy on the identification of very few-layer (one or two layers) phosphorene and thus on their properties [16][17][18] . This controversy was primarily due to the lack of a robust experimental technique to precisely identify the monolayer phosphorene. Consequently, many important fundamental properties of monolayer phosphorene, such as its excitonic nature, remain elusive. In this study, we propose and implement a rapid, noninvasive,