Understanding the impact of individual and task differences on search result page examination strategies is important in developing improved search engines. Characterizing these effects using query and click data alone is common but insufficient since they provide an incomplete picture of result examination behavior. Cursor-or gaze-tracking studies reveal richer interaction patterns but are often done in small-scale laboratory settings. In this paper we leverage large-scale rich behavioral log data in a naturalistic setting. We examine queries, clicks, cursor movements, scrolling, and text highlighting for millions of queries on the Bing commercial search engine to better understand the impact of user, task, and user-task interactions on user behavior on search result pages (SERPs). By clustering users based on cursor features, we identify individual, task, and user-task differences in how users examine results which are similar to those observed in small-scale studies. Our findings have implications for developing search support for behaviorally-similar searcher cohorts, modeling search behavior, and designing search systems that leverage implicit feedback.