The evolution of vortex configuration for superconducting ring is simulated by the Ginzburg-Landau theory in the presence of an externally applied field. The effects of the applied field, the material parameter, the size of ring on the entrance of vortices into the ring and distributing of steady vortices are discussed. Research results show that the higher the applied field, the bigger the material parameter κ is, and the larger the width of the ring, the bigger the number of the vortices which the ring accommodates. The vortices enter into the ring only from the inner boundary when the applied field is low enough, otherwise the vortices enter into the ring first from the outer boundary and then from the inner boundary.