This paper reports on a silicon micro-hole arrays (Si-MHA) prepared by Inductively Coupled Plasma (ICP) etching, a dry etching method. By ICP etcher, we carried out several experimental researches and process exploration for micromachining Si-MHA. The mechanism of lateral etching, sidewall passivation, gas micro-transport and some process parameters in Si-MHA micromachining, such as gas switching time, flow rate, etching rate, were analyzed. The footing effect, lag effect, longitudinal strips and RIE grass effect occurred in the ICP etching process were also studied. These process problems had reappeared in the micro-hole arrays process though these problems had be solved in the field of integrated circuits process and microelectromechanical system (MEMS). The study results reported here had demonstrated a Si-MHA that the diameter was 15 µm, the center distance 30 µm, and the depth 240 µm prepared by ICP, and had led the author to believe that the deep pore structure and the deep trench with high aspect ratio were very different in etching process. The former is a closed structure for the gas transport, and the latter is an open structure, so the process of deep hole structure is a puzzle in micromachining and MEMS technology.