A novel technique for bonding polymer substrates using PDMS-interface bonding is presented in this paper. This novel bonding technique holds promise for achieving precise, well-controlled, low temperature bonding of microfluidic channels. A thin (10-25 µm) poly(dimethylsiloxane) (PDMS) intermediate layer was used to bond two poly(methyl methacrylate) (PMMA) substrates without distorting them. Microchannel patterns were compressed on a PMMA substrate by a hot embossing technique first. Then, PDMS was spin-coated onto another PMMA bare substrate and cured in two stages. In the first stage, it was pre-cured at room temperature for 20 h to increase the viscosity. Subsequently, it was bonded to the hot embossed PMMA substrate. In the second stage, PDMS was completely cured at 90 • C for 3 h and the bonding was successfully achieved at this relatively low temperature. Tensile bonding tests showed that the bonding strength was about 0.015 MPa. Microfluidic channels with dimensions of 300 µm × 1.6 cm × 100 µm were successfully fabricated using this novel bonding method.