Metallized cold-spray coatings were employed to make B4C/AA7075 and aluminum + plasma electrolytic oxidation (PEO) duplex coatings on AZ64. In addition, the phase structure, mechanical characteristics, wear, and PEO ceramic coatings examine the corrosion resistance. According to the findings, the PEO ceramic coating comprises α-aluminum oxide and γ-aluminum oxide, with some remnants of B4C still being preserved. PEO ceramic coatings outperformed their corresponding CS counterparts regarding mechanical characteristics and wear resistance. For example, the PEO-B4C coating achieved a hardness of 13.8 GPa and an elastic modulus of 185.5 GPa, which were 21.0% and 23.5%, respectively, more significant than the comparable values for the coating with CS. The PEO-B4C coating was 58% and 15.7% less abrasive than the equivalent CS coating due to its lower wear rate of 4.84 × 10−5 mm3/Nm and relatively lower of 0.64. The density of corrosion current in the PEO-treated B4C-AA7075 coating (3.735 × 106 A/cm2) is similar to the corrosion current density in the untreated CS coatings. Finally, compared to untreated CS B4C-AA7075, the coating’s mechanical characteristics and wear resistance are considerably enhanced by the PEO treatment.