This paper focuses on the cheating algorithm for device-to-device (D2D) pairs that reuse the uplink channels of cellular users. We are concerned about the way how D2D pairs are matched with cellular users (CUs) to maximize their sum rate. In contrast with Munkres’ algorithm which gives the optimal matching in terms of the maximum throughput, Gale-Shapley algorithm ensures the stability of the system on the same time and achieves a men-optimal stable matching. In our system, D2D pairs play the role of “men,” so that each D2D pair could be matched to the CU that ranks as high as possible in the D2D pair’s preference list. It is found by previous studies that, by unilaterally falsifying preference lists in a particular way, some men can get better partners, while no men get worse off. We utilize this theory to exploit the best cheating strategy for D2D pairs. We find out that to acquire such a cheating strategy, we need to seek as many and as large cabals as possible. To this end, we develop a cabal finding algorithm named RHSTLC, and also we prove that it reaches the Pareto optimality. In comparison with other algorithms proposed by related works, the results show that our algorithm can considerably improve the sum rate of D2D pairs.