The extended Zakharov model of the two-plasmon decay instability in an inhomogeneous plasma [D. F. DuBois et al., Phys. Rev. Lett. 74, 3983 (1995); D. A. Russell and D. F. DuBois, Phys. Rev. Lett. 86, 428 (2001)] is further generalized to include the evolution of the electron distribution function in the quasi-linear approximation [cf., e.g., K. Y. Sanbonmatsu et al. Phys. Plasmas 7, 2824 (2000); D. A. Russell et al., paper presented at the Workshop on SRS/SBS Saturation, Wente Vineyards, Livermore, CA, 2–5 April 2002]. This makes it possible to investigate anomalous absorption of laser light and hot electron production due to the two-plasmon decay instability of multiple overlapping electromagnetic waves. Scalings of hot-electron production in the (stationary) nonlinearly saturated regime relevant to recent experiments [B. Yaakobi et al., Phys. Plasmas 19, 012704 (2012); D. H. Froula et al., Phys. Rev. Lett. 108, 165003 (2012)] have been obtained. They indicate a sensitivity to ion-acoustic wave (IAW) damping and to the collisional absorption of Langmuir waves. Such a sensitivity might be exploited in inertial confinement fusion target design by the use of mid-Z ablators.