Observations of electron phase-space holes (EHs) in Earth's plasma sheet by the THEMIS satellites include the first detection of a magnetic perturbation (deltaB_{ parallel}) parallel to the ambient magnetic field (B0). EHs with a detectable deltaB_{ parallel} have several distinguishing features including large electric field amplitudes, a magnetic perturbation perpendicular to B0, high speeds ( approximately 0.3c) along B0, and sizes along B0 of tens of Debye lengths. These EHs have a significant center potential (Phi approximately k_{B}T_{e}/e), suggesting strongly nonlinear behavior nearby such as double layers or magnetic reconnection.
A two-component model of strong Langmuir turbulence is developed, in which intense coherent Langmuir wave packets nucleate from and collapse amid a sea of low-level background waves. Power balance between these two components determines the overall scalings of energy density and power dissipation in the turbulence, and of the rate of formation, number density, volume fraction, and characteristic nucleation time of collapsing wave packets. Recent insights into the structure and evolution of collapsing wave packets are employed to estimate the spectra and field statistics of the turbulence. Extensive calculations using the Zakharov equations in two and three dimensions demonstrate that the predictions of the model are in excellent agreement with numerical results for scalings, spectra, and the distribution of fields in the turbulence in isotropic systems; strong support is thus found for the nucleation model. The scaling behavior proves to be insensitive to the form of the damping of the waves at large wave numbers. Wave collapse is approximately inertial between the nucleation and dissipation scales, yielding power-law energy spectra and field distributions in this range. The existence of a fixed arrest scale manifests itself in exponentially decreasing energy and dissipation spectra at high wave numbers and exponentially decreasing field distributions at high field strengths. It is suggested that such an exponential decrease may explain the field distributions seen in recent beam–plasma experiments. Generalizations to turbulence driven anisotropically by beams or governed by equations other than the Zakharov equations are outlined. It is shown that a previously unrecognized scaling observed in beam-driven systems is correctly predicted by the generalized model.
We report the first direct observations of parallel electric fields (E_{ parallel}) carried by double layers (DLs) in the plasma sheet of Earth's magnetosphere. The DL observations, made by the THEMIS spacecraft, have E_{ parallel} signals that are analogous to those reported in the auroral region. DLs are observed during bursty bulk flow events, in the current sheet, and in plasma sheet boundary layer, all during periods of strong magnetic fluctuations. These observations imply that DLs are a universal process and that strongly nonlinear and kinetic behavior is intrinsic to Earth's plasma sheet.
Direct observations of the parallel electric field by the Fast Auroral Snapshot satellite and the Polar satellite suggest that the ionospheric boundary of the auroral cavity is consistent with an oblique double layer that carries a substantial fraction (roughly 5% to 50%) of the auroral potential. A numerical solution to the Vlasov–Poisson equations of a planar, oblique double layer reproduces many of the properties of the observed electric fields, electron distributions, and ion distributions. The solutions indicate that the electron and ion distributions that emerge from the ionospheric side dominate the structure of the double layer. The ionospheric electron distribution includes scattered and reflected (mirrored) primaries, auroral secondaries, photoelectrons, and a cold population. A large fraction of the ionospheric electrons is reflected by the parallel electric field whereas the ionospheric ions are strongly accelerated. The steep density gradient between the ionosphere and the auroral cavity results in a highly asymmetric double layer, with a strong, localized positive charge layer on the ionospheric side and a moderate, extended negative charge layer on the auroral cavity side. This structure results in an asymmetric electric field, a feature also seen in the observations. The electric field observations, however, do not always support a planar double layer since the parallel and perpendicular signals are not always well correlated. Fully two-dimensional solutions are needed to better reproduce the observed features.
[1] In preparation for the MMS mission we ask the question: how common are bipolar signatures linked to the presence of electron holes along separatrices emanating from reconnection regions? To answer this question, we conduct massively parallel simulations for realistic conditions and for the hydrogen mass ratio in boxes larger than considered in similar previous studies. The magnetic field configuration includes both a field reversal and an out of plane guide field, as typical of many space situations. The guide field is varied in strength from low values (typical of the Earth magnetotail) to high values comparable to the in-plane reconnecting field (as in the magnetopause). In all cases, along the separatrices a strong electron flow is observed, sufficient to lead to the onset of streaming instabilities and to form bipolar parallel electric field signatures. The presence of bipolar structures at all guide fields allows the control of the MMS mission to consider the presence of bipolar signatures as a general flag of the presence of a nearby reconnection site both in the nightside and in the dayside of the magnetosphere. Citation: Lapenta, G., S. Markidis, A. Divin, M. V. Goldman, and D. L. Newman (2011), Bipolar electric field signatures of reconnection separatrices for a hydrogen plasma at realistic guide fields, Geophys. Res. Lett., 38, L17104,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.