2014
DOI: 10.14778/2733004.2733066
|View full text |Cite
|
Sign up to set email alerts
|

Faster visual analytics through pixel-perfect aggregation

Abstract: State-of-the-art visual data analysis tools ignore bandwidth limitations. They fetch millions of records of high-volume time series data from an underlying RDBMS to eventually draw only a few thousand pixels on the screen.In this work, we demonstrate a pixel-aware big data visualization system that dynamically adapts the number of data points transmitted and thus the data rate, while preserving pixel-perfect visualizations. We show how to carefully select the data points to fetch for each pixel of a visualizat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
10
0
2

Year Published

2016
2016
2023
2023

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 14 publications
(12 citation statements)
references
References 13 publications
0
10
0
2
Order By: Relevance
“…Lumira and VAS. In [165], [166], an inter-connection mechanism between exploration and visualization is proposed. Lumira is pixel-wise, i.e., explored groups will be pruned to match available pixels to visualize [166].…”
Section: Connectivity Between Uga Componentsmentioning
confidence: 99%
See 1 more Smart Citation
“…Lumira and VAS. In [165], [166], an inter-connection mechanism between exploration and visualization is proposed. Lumira is pixel-wise, i.e., explored groups will be pruned to match available pixels to visualize [166].…”
Section: Connectivity Between Uga Componentsmentioning
confidence: 99%
“…In [165], [166], an inter-connection mechanism between exploration and visualization is proposed. Lumira is pixel-wise, i.e., explored groups will be pruned to match available pixels to visualize [166]. VAS is samplingbased, i.e., it picks a sampling rate that fits the visualization criteria defined by the analyst [165].…”
Section: Connectivity Between Uga Componentsmentioning
confidence: 99%
“…data reduction techniques) in which partial results are computed. Existing approaches are mostly based on: (1) sampling and filtering [40,81,2,55,13] and/or (2) aggregation (e.g., binning, clustering) [37,59,58,77,111,12,76,1,57]. Similarly, some modern database-oriented systems adopt approximation techniques using querybased approaches (e.g., query translation, query rewriting) [13,59,58,106,112].…”
Section: Introductionmentioning
confidence: 99%
“…Οι υφιστάμενες προσεγγίσεις βασίζονται κυρίως: (1) στη δειγματοληψία (sampling) και στο φιλτράρισμα (filtering) [155,271,212,20,190,46] και/ή στη (2) συνάθροιση (aggregation) (π.χ. binning, clustering) [144,198,197,167,239,344,45,236,18,195]. Ομοίως, μερικά σύγχρονα συστήματα βάσεων δεδομένων (database-oriented systems) υιοθετούν τεχνικές προσεγγίσεις χρησιμοποιώντας προσεγγίσεις ερωτήσεων (π.χ.query translation, query rewriting) [46,198,197,337,346].…”
Section: αποδοτική πολυεπίπεδη διερεύνησηunclassified
“…binning, clustering) [144,198,197,167,239,344,45,236,18,195]. Ομοίως, μερικά σύγχρονα συστήματα βάσεων δεδομένων (database-oriented systems) υιοθετούν τεχνικές προσεγγίσεις χρησιμοποιώντας προσεγγίσεις ερωτήσεων (π.χ.query translation, query rewriting) [46,198,197,337,346]. Πρόσφατα, σταδιακές τεχνικές προσεγγίσεων (incremental approximation techniques) έχουν υιοθετηθεί: σε αυτές τις μεθόδους υπολογίζονται προσεγγιστικές απαντήσεις σε προοδευτικά μεγαλύτερα σύνολα δεδομένων [155,20,190].…”
Section: αποδοτική πολυεπίπεδη διερεύνησηunclassified