A procedure using digital image correlation (DIC) to detect cracks on welded specimens during fatigue tests on resonance testing machines is presented. It is intended as a practical and reproducible procedure to identify macroscopic cracks at an early stage and monitor crack propagation during fatigue tests. It consists of strain field measurements at the weld using DIC. Images are taken at fixed load cycle intervals. Cracks become visible in the computed strain field as elevated strains. This way, the whole width of a small-scale specimen can be monitored to detect where and when a crack initiates. Subsequently, it is possible to monitor the development of the crack length. Because the resulting images are saved, the results are verifiable and comparable. The procedure is limited to cracks initiating at the surface and is intended for fatigue tests under laboratory conditions. By visualizing the crack, the presented procedure allows direct observation of macrocracks from their formation until rupture of the specimen. Video Link The video component of this article can be found at https://www.jove.com/video/60390/ With the advance of computational technologies, DIC is becoming more and more popular for industrial and research applications. Several commercial measurement software systems as well as open-source software are available 1. The proposed procedure offers another use of a technology already available in an increasing number of research facilities in mechanical and civil engineering. Compared to visual inspections or dye penetration testing, the proposed procedure is not based on subjective perception, which depends on an operator's experience and the local geometry at the weld toe. Even with high magnification it may be challenging to detect cracks at an early stage (i.e., crack initiation), especially if the exact location is not known in advance. Furthermore, using DIC the results are saved and therefore reproducible and comparable, whereas visual inspection is possible only momentarily. Using a full-field measurement the procedure allows monitoring the whole width of the specimen or length of the weld. Using strain gauges, it would be necessary to apply several gauges over the specimen width, because their measurement is localized. The changes in the strain gauge signal would depend on the distance and the position relative to the crack. The result would depend on whether the crack would initiate in between two gauges or by chance in front of one.