2014
DOI: 10.1007/978-94-017-8798-7_22
|View full text |Cite
|
Sign up to set email alerts
|

Fault Classification of an Induction Motor Using Texture Features of Vibration Signals

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2018
2018
2020
2020

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 9 publications
0
1
0
1
Order By: Relevance
“…Esta técnica consiste na geração de uma imagem 2D em escala de cinza através da conversão de um sinal 1D, podendo servir de entrada para um GLCM [12], [13].…”
Section: Conjunto De Dadosunclassified
“…Esta técnica consiste na geração de uma imagem 2D em escala de cinza através da conversão de um sinal 1D, podendo servir de entrada para um GLCM [12], [13].…”
Section: Conjunto De Dadosunclassified
“…However, LBP cannot efficiently extracts features from the uncertain image patterns due to the non-adaptive parameter selection, such as the number of neighbour pixels (P) and radius (R). Jang et al (2014) proposed a 2D texture feature analysis based fault classification model using grey-level co-occurrence matrix (GLCM). Kang and Kim (2013) and Nava (2014) also proposed texture analysis based signal processing approaches for fault diagnosis.…”
Section: Introductionmentioning
confidence: 99%