“…InSAR is a powerful tool to map precisely and over large areas surface displacements (e.g., Bürgmann et al, ; Hooper et al, ). This technique has been widely employed in earthquake and fault studies (e.g., Jolivet et al, ; Pathier et al, ; Rousset et al, ; Sudhaus & Jónsson, ; Wimpenny et al, ), volcanic dike intrusions (e.g., Cervelli et al, ; Grandin et al, ; Manconi & Casu, ; Pedersen & Sigmundsson, ), landslide monitoring (e.g., Fruneau et al, ; Hilley et al, ; Schlögel et al, ; Strozzi et al, ; Wasowski & Bovenga, ), urban subsidence (e.g., Amelung et al, ; Bawden et al, ; Fruneau & Sarti, ; López‐Quiroz et al, ), permafrost freeze‐thaw cycles (e.g., Chang & Hanssen, ; Daout et al, ; Liu et al, ; Short et al, ), or water vapor mapping (e.g., Hanssen et al, ; Wadge et al, ). However, for small deformation signals in high mountainous areas, such as interseismic deformation, the approach suffers from major limitations due to high topographic gradients and unsuitable valley flank orientations relative to the synthetic aperture radar (SAR) view angle, snow cover, or atmospheric delays.…”