This paper is the second part of a twopart study of impact interaction of a ship roll motion with one-sided ice barrier. The first part was devoted to analytical and numerical simulations for the case of inelastic impact. The analytical approach was based on Zhuravlev and Ivanov non-smooth coordinate transformations. Extensive numerical simulations were carried out for all initial conditions covered by the ship grazing orbit for different values of excitation amplitude and frequency of external waveinduced roll moment. The basins of attraction of safe operation revealed the coexistence of different response regimes such as non-impact periodic oscillations, modulated impact motion, period added impact oscillations, chaotic impact motion and roll-over dynamics. This part presents an experimental investigation conducted on a small ship model in a tow tank. In particular, the experimental tests reveal complex dynamic response characteristics such as multifrequency wave motion caused by the wave reflection from the tank end wall. Measured results show a good agreement with the predicted results by for small angles of the barrier relative to the ship unbiased position. However, deviation becomes significant as the angle increases. This deviation is mainly attributed to the uncertainty of the coefficient of restitution, which I.M. Grace · R.A. Ibrahim ( ) · V.N. Pilipchuk is found to depend on the velocity of impact in addition to the geometry and material properties of the model and barrier.