The word “symmetry” is a Greek word that originated from “symmetria”. It means an agreement in dimensions, due proportion, and arrangement; however, in complex analysis, it means objects remaining invariant under some transformation. This idea has now been recently used in geometric function theory to modify the earlier classical q-derivative introduced by Ismail et al. due to its better convergence properties. Consequently, we introduce a new class of analytic functions by using the notion of q-symmetric derivative. The investigation in this paper obtains a number of the latest important results in q-theory, including coefficient inequalities and convolution characterization of q-symmetric starlike functions related to Janowski mappings.