Purpose: Increased utilization of magnetic resonance imaging (MRI) in radiotherapy has caused a growing need for phantoms that provide tissue-like contrast in both computed tomography (CT) and MRI images. Such phantoms can be used to compare MRI-based processes with CT-based clinical standards. Here, we develop and demonstrate the clinical utility of a three-dimensional (3D)-printed anthropomorphic pelvis phantom containing materials capable of T 1 , T 2 , and electron density matching for a clinically relevant set of soft tissues and bone. Methods: The phantom design was based on a male pelvic anatomy template with thin boundaries separating tissue types. Slots were included to allow insertion of various dosimeters. The phantom structure was created using a 3D printer. The tissue compartments were filled with carrageenan-based materials designed to match the T 1 and T 2 relaxation times and electron densities of the corresponding tissues. CT and MRI images of the phantom were acquired and used to compare phantom T 1 and T 2 relaxation times and electron densities to literature-reported values for human tissue. To demonstrate clinical utility, the phantom was used for end-to-end testing of an MRI-only treatment simulation and planning workflow. Based on a T 2 -weighted MRI image, synthetic CT (sCT) images were created using a statistical decomposition algorithm (MRIPlanner, Spectronic Research AB, Sweden) and used for dose calculation of volumetric-modulated arc therapy (VMAT) and seven-field intensity-modulated radiation therapy (IMRT) prostate plans. The plans were delivered on a Truebeam STX (Varian Medical Systems, Palo Alto, CA), with film and a 0.3 cc ion chamber used to measure the delivered dose. Doses calculated on the CT and sCTs were compared using common dose volume histogram metrics. Results: T 1 and T 2 relaxation time and electron density measurements for the muscle, prostate, and bone agreed well with literature-reported in vivo measurements. Film analysis resulted in a 99.7% gamma pass rate (3.0%, 3.0 mm) for both plans. The ion chamber-measured dose discrepancies at the isocenter were 0.36% and 1.67% for the IMRT and VMAT plans, respectively. The differences in PTV D98% and D95% between plans calculated on the CT and 1.5T/3.0 T-derived sCT images were under 3%. Conclusion: The developed phantom provides tissue-like contrast on MRI and CT and can be used to validate MRI-based processes through comparison with standard CT-based processes.