The photochemistry of protochlorophyllide a, a precursor in the biosynthesis of chlorophyll and substrate of the light regulated enzyme protochlorophyllide oxidoreductase, is investigated by pump-probe spectroscopy. Upon excitation into the lowest lying Q-band the light induced changes are recorded over a wide range of probe wavelengths in the visible and near-IR region between 500 and 1000 nm. Following excitation, an initial ultrafast 450 fs process is observed related to the motion out of the Franck-Condon region on the excited state surface; thus directly unraveling previous suggestions based on time-resolved fluorescence measurements (ChemPhysChem 2006, 7, 1727-1733). Furthermore, the data reveals a previously concealed photointermediate, whose formation on a nanosecond timescale matches the overall fluorescence decay and is assigned to a triplet state. The implications of this finding with respect to the photochemistry of NADPH:protochlorophyllide oxidoreductase (POR) are discussed.