Diabetic retinopathy is the leading cause of blindness in working population. Lesion segmentation from fundus images helps ophthalmologists accurately diagnose and grade of diabetic retinopathy. However, the task of lesion segmentation is full of challenges due to the complex structure, the various sizes and the interclass similarity with other fundus tissues. To address the issue, this paper proposes a cascade attentive RefineNet (CARNet) for automatic and accurate multi-lesion segmentation of diabetic retinopathy. It can make full use of the fine local details and coarse global information from the fundus image. CARNet is composed of global image encoder, local image encoder and attention refinement decoder. We take the whole image and the patch image as the dual input, and feed them to ResNet50 and ResNet101, respectively, for downsampling to extract lesion features. The high-level refinement decoder uses dual attention mechanism to integrate the same-level features in the two encoders with the output of the low-level attention refinement module for multiscale information fusion, which focus the model on the lesion area to generate accurate predictions. We evaluated the segmentation performance of the proposed CARNet on the IDRiD, E-ophtha and DDR data sets. Extensive comparison experiments and ablation studies on various data sets demonstrate the proposed framework outperforms the state-of-the-art approaches and has better accuracy and robustness. It not only overcomes the interference of similar tissues and noises to achieve accurate multi-lesion segmentation, but also preserves the contour details and shape features of small lesions without overloading GPU memory usage.