2018
DOI: 10.4236/jamp.2018.64066
|View full text |Cite
|
Sign up to set email alerts
|

Finite Difference Implicit Schemes to Coupled Two-Dimension Reaction Diffusion System

Abstract: In this research article, two finite difference implicit numerical schemes are described to approximate the numerical solution of the two-dimension modified reaction diffusion Fisher's system which exists in coupled form. Finite difference implicit schemes show unconditionally stable and second-order accurate nature of computational algorithm also the validation and comparison of analytical solution, are done through the examples having known analytical solution. It is found that the numerical schemes are in e… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
1
1
1

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(4 citation statements)
references
References 22 publications
0
2
0
2
Order By: Relevance
“…As of late numerous researchers' work on two-dimensional response shows utilizing distinctive plans and methods like Hasnain. et.al (2017) [19].Finite Difference Implicit Schemes like ADI to Coupled Two-Dimension Reaction Diffusion System has been work by Hasnain et al (2018) [20].Mojtaba Barzegari et al(2022) research on reaction-diffusion models with shifting boundaries results in a system where both diffusion and reaction develop the system's state and geometry over time [21]. Recently Mas Irfan P. Hidayat et al(2023) introducing a novel meshfree method based on moving Kriging interpolation for efficient and accurate numerical solutions to reaction-diffusion problems [22].…”
Section: B Backgroundmentioning
confidence: 99%
“…As of late numerous researchers' work on two-dimensional response shows utilizing distinctive plans and methods like Hasnain. et.al (2017) [19].Finite Difference Implicit Schemes like ADI to Coupled Two-Dimension Reaction Diffusion System has been work by Hasnain et al (2018) [20].Mojtaba Barzegari et al(2022) research on reaction-diffusion models with shifting boundaries results in a system where both diffusion and reaction develop the system's state and geometry over time [21]. Recently Mas Irfan P. Hidayat et al(2023) introducing a novel meshfree method based on moving Kriging interpolation for efficient and accurate numerical solutions to reaction-diffusion problems [22].…”
Section: B Backgroundmentioning
confidence: 99%
“…The implicit finite difference techniques were effectively used by the authors in [3] for various problems. Pseudo-parabola implementations are displayed in [5,6], [9]. In this manuscript, the following pseudo-hyperbolic partial differential equations are taken into consideration:…”
Section: Introductionmentioning
confidence: 99%
“…Sob o ponto de vista computacional, diferentes métodos podem ser aplicados com o objetivo de construir aproximações numéricas para essa classe de problemas. Na literatura, métodos numéricos de diferenças finitas tais como Crank-Nicolson e ADI (Alternating-Direction Implicit) são frequentemente utilizados (Hasnain et al, 2018;Pereira, 2019). Em casos onde o termo reativo é linear, o método ADI produz sistemas de equações lineares cuja matriz é tridiagonal, fato este que pode reduzir consideravelmente o custo computacional envolvido na solução numérica.…”
Section: Revisão Da Literaturaunclassified
“…Em casos onde o termo reativo é linear, o método ADI produz sistemas de equações lineares cuja matriz é tridiagonal, fato este que pode reduzir consideravelmente o custo computacional envolvido na solução numérica. Entretanto, na presença de termos de reação não-lineares, torna-se necessário utilizar um esquema de resolução de sistemas não lineares (como o método de Newton) em cada passo de tempo (Hasnain et al, 2018) e, portanto, demandam grande esforço computacional. Para contornar esse problema, a busca por métodos numéricos eficientes e precisos é fundamental para resolver os modelos de maneira viável.…”
Section: Revisão Da Literaturaunclassified