The partial chemical activation of water by reactive radicals was examined computationally for small clusters of chlorine and water, Cl • (H 2 O) n=1−4 . Using an automated isomer-search procedure, dozens of unique, stable structures were computed. Among the resulting structural classes were intact, hydrated-chlorine isomers, as well as hydrogen-abstracted (HCl)(OH)(H 2 O) n−1 configurations. The latter showed increased stability as the degree of hydration increased, until n = 4, where a new class of structures was discovered with a chloride ion bound to an oxidized water network. The electronic structure of these three structural classes was investigated, and spectral signatures of this hydration-based evolution were connected to these electronic properties. An ancillary outcome of this detailed computational analysis, including coupled-cluster benchmarks, was the calibration of cost-effective quantum chemistry methods for future studies of these radical−water complexes.