In recent years, an increase in the occurrence of antimicrobial resistance among Salmonella enterica has been observed in several countries, which is worrisome because S. enterica is one of the most common causes of human gastroenteritis worldwide. The aim of this study was to characterize class 1 integrons and antibiotic resistance genotypes in Salmonella enterica isolates recovered from foodstuff and related sources.Nineteen multidrug-resistant (MDR) Salmonella enterica isolates were recovered. Higher resistance rates to tetracycline (90%), streptomycin (80%), sulfamethoxazole-trimethoprim (80%), ampicillin (60%) and nalidixic acid (70%) were related to the presence of the tetA, aadA, sul1/sul2, bla TEM-1 genes, and a codon mutation at position 83 of the gyrA gene, respectively. Class 1 integrons harboring aadA, bla TEM-1 , sul1 or dhfr1 genes were detected in nine (45%) Salmonella enterica strains belonging to serotypes Brandenburg, Panama, Agona, Mbandaka and Alachua. Finally, clonal dissemination of S. Panama, S. Derby and S.Mbandaka was confirmed by PFGE. Detection of clonally related MDR Salmonella enterica suggests that endemic serotypes can be supported by class 1 integron-borne gene cassettes and/or mutations in drug targets. Emergence and dissemination of multidrug-resistant Salmonella enterica can have a major public health impact in an environment where large-scale suppliers ship their products.