Strains of Vibrio parahaemolyticus, Vibrio fluvialis and Vibrio mimicus isolated from seafood and seawater were examined for characteristics related to infectivity, such as enzymatic activity and animal assays. All strains hydrolysed DNA, starch, gelatin and chitin. Variable results were obtained with the haemolysin, chondroitin, collagen, elastin and lecithin tests. Production of thermostable direct haemolysin by V. parahaemolyticus was detected in 7.1% strains derived from seafood and 2% from seawater. In the animal assays, strains of V. fluvialis showed positive results at skin PF (75%), mouse lethality (100%), but no fluid accumulation in the suckling mice model was noted. Concerning V. mimicus, results showed skin PF (100%), mouse lethality (100%) and fluid accumulation in suckling mice (66.6%).
Objective: The present study was undertaken to characterize CTX-M ESBL-producing Klebsiella pneumoniae collected from hospitals in different cities of Brazil. Material and Methods: Eighty-five K. pneumoniae strains isolated from hospitalized patients in six different hospitals of three cities of Brazil were analyzed. ESBL production was confirmed by the standard double-disk synergy test and the Etest®. The MIC 50 and MIC 90 for ESBL-producing isolates were determined by the Etest® method. The antimicrobial susceptibilities of bacterial isolates were determined using the agar diffusion method according to the CLSI. Screening for bla TEM, bla SHV, bla CTX-M genes and class 1 integron was performed by PCR amplification. To determine the genomic diversity of CTX-M-producers, isolates were analyzed by macrorestriction profile analysis following PFGE. Results and Discussion: Seventy-one K. pneumoniae isolates were ESBL-producing. PCR and sequencing experiments detected 38 CTX-M-producing K. pneumoniae belonged to groups CTX-M 1, CTX-M 2, CTX-M 8 and CTX-M 9. The association of different types ESBL (CTX-M, SHV and TEM) was frequent. All K. pneumoniae isolates carried class 1 integron. PFGE analysis revealed thirty-one clonal types among CTX-M-producing isolates. The data presented herein illustrate the diversity of genotypes of CTX-M producing K. pneumoniae among Brazilians hospitals.
Vibrio cholerae is an important human pathogen and the cause of cholera. Since genetic variation and antibiotic resistance of strains have implications for effective treatment of the disease, we examined the genetic diversity and antibiotic resistance profile in 92 clinical strains (serogroup O1) and 56 environmental strains (O1 antigen, 42 strains; non-O1 antigen, 14 strains) isolated in Brazil between 1991 and 1999. Clinical and environmental O1 strains showed greater drug resistance compared to environmental non-O1 strains. Nearly all clinical O1 strains were resistant to one or more antibiotics while half of the environmental O1 and non-O1 strains were resistant to one or more antibiotics. No plasmids or class 1 integrons were detected in the strains by PCR analysis. Multilocus enzyme electrophoresis analysis (MLEE) suggests most of the O1 strains belong to a single (South American) clone that is related but different to seventh-pandemic strains isolated from other parts of the world. Our results show that there is a close genetic relationship between clinical and environmental O1 strains and that many serogroups and the environment can be a reservoir for antibiotic resistance.
Genes located on the CTX element and the Vibrio cholerae pathogenicity island (VPI) were investigated in 297 clinical V. cholerae O1 and 76 environmental O1 and non-O1 isolates from Brazil between 1991 and 1999. RAPD analysis suggested that serogroup O1 strains regardless of clinical or environmental source were clonal while non-O1 strains showed greater diversity. PCR analysis showed that 71% of O1 clinical isolates had a complete set of CTX element target genes (ctxA, ctxB, zot and ace) and 68% a complete set of the VPI genes studied (orf1, aldA, tagA, tcpA, toxT and int genes). The results also showed that 72.4% of environmental O1 isolates possessed ctxA, ctxB, zot and ace genes while environmental non-O1 strains rarely possessed virulence genes. Our data are consistent with the hypothesis that the CTX element and the VPI can have a mosaic structure in some V. cholerae strains, genotype diversity is due to the circulation of virulence genes which are more commonly found in O1 strains in Brazil. This study also shows that the aquatic environment is a potential source for virulence genes and toxigenic V. cholerae during epidemic periods.
Seventy-one K. pneumoniae isolates were ESBL-producing. PCR and sequencing experiments detected 38 CTX-M-producing K. pneumoniae belonged to groups CTX-M 1, CTX-M 2, CTX-M 8 and CTX-M 9. The association of different types ESBL (CTX-M, SHV and TEM) was frequent. All K. pneumoniae isolates carried class 1 integron. PFGE analysis revealed thirty-one clonal types among CTX-M-producing isolates. The data presented herein illustrate the diversity of genotypes of CTX-M producing K. pneumoniae among Brazilians hospitals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.