2001
DOI: 10.1524/teme.2001.68.4.160
|View full text |Cite
|
Sign up to set email alerts
|

Flächenhafte numerische Beschreibung, Ausrichtung und Auswertung von Zylinderrädern (3D-Surface-like Numerical Description, Alignment, and Evaluation of Involute Cylindrical Gears)

Abstract: Die klassische Verzahnungsmesstechnik bezieht sich graeûtenteils immer noch auf Normen, welche von den Bewegungsablåufen konventioneller mechanischer Verzahnungsmessgeråte ausgehen. Als problematisch ist hier zum einen die mechanische Ausrichtung anhand geometrischer Grundkaerper und Aufspanneinrichtungen zu betrachten. Zum anderen geht man bei der Auswertung gemessener Flanken-und Profillinien im Allgemeinen davon aus, dass am ideal aufgespannten Zahnrad die Profil-und Flankenlinien exakt ¹getroffenª wurden. … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
7
0

Year Published

2009
2009
2021
2021

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 14 publications
(7 citation statements)
references
References 1 publication
0
7
0
Order By: Relevance
“…In Figure 2 , this nominal geometry in the transverse section is shown in a workpiece coordinate system ( x , y ) that is shifted and rotated to the sensor coordinate system ( x s , y s ). The nominal geometry of involute spur gears can be described by geometry and position parameters employing the geometric model according to [ 17 , 18 , 19 ]: A nominal point P i on the tooth flank of tooth Z results from an addition of a radial vector and a tangential vector in the workpiece coordinate system ( x , y ). The vector has the length of the geometry parameter base circle radius r b of the spur gear while the angle depends on position parameters .…”
Section: Measurement Principlementioning
confidence: 99%
See 1 more Smart Citation
“…In Figure 2 , this nominal geometry in the transverse section is shown in a workpiece coordinate system ( x , y ) that is shifted and rotated to the sensor coordinate system ( x s , y s ). The nominal geometry of involute spur gears can be described by geometry and position parameters employing the geometric model according to [ 17 , 18 , 19 ]: A nominal point P i on the tooth flank of tooth Z results from an addition of a radial vector and a tangential vector in the workpiece coordinate system ( x , y ). The vector has the length of the geometry parameter base circle radius r b of the spur gear while the angle depends on position parameters .…”
Section: Measurement Principlementioning
confidence: 99%
“…In order to solve the inverse problem, the geometric model of the nominal involute is fitted to the measured data by iteratively minimizing the sum of the squared plumb line distances i.e., by using a nonlinear least-squares method. According to [ 17 , 21 ], the plumb line distances to the nominal involute of a spur gear are determined by …”
Section: Measurement Principlementioning
confidence: 99%
“…According to [ 9 , 20 , 21 ], a measured actual point on the individual tooth flank can be described by adding the nominal point P of a spur gear to the deviation to the nominal geometry in the normal direction of the surface, the plumb line distance d plu . According to Figure 1 , each nominal point of tooth Z of a spur gear can be calculated by vector addition of a radial component , a tangential component in the workpiece coordinate system ( x’, y’ ) and the translation vector to the workpiece coordinate system.…”
Section: Measurement Principlementioning
confidence: 99%
“…According to [ 20 , 22 ], the plumb line distances to the ideal involute can be calculated to whereby the corresponding rolling angles to the root point of the plumb line distances on the involutes are determined implicitly. The parameter r I is the radius of the detected actual point in polar coordinates within the workpiece coordinate system and describes the corresponding polar angle to the radius r I .…”
Section: Measurement Principlementioning
confidence: 99%
“…The nominal position P N of any point on a flank of a gear can be determined in (x, y, z)-coordinates as a function of a few parameters (according to [7][8][9]): -rolling angle $, -position in z-direction, -base circle radius r b , -rotational position of the gear q, -number of teeth n, -base helix angle b b…”
Section: Calculation Of Deviations For Each Flankmentioning
confidence: 99%