“…It is now well established that these artificial pinning centers (i) hold great potential for enhancing the critical parameters of the sample and (ii) give rise to different kinds of vortex behavior that is not observed in the presence of random pinning. In this respect, arrays of microholes (antidots) 1,2,3,4,5,6,7,8,9,10,11,12 and submicron magnetic dots, 13,14,15 have been studied, as their presence in the SC film strongly modifies the vortex structure compared to the one in non-patterned films. 16,17 Direct imaging experiments, 1 magnetization and transport measurements, 2,3,4,5 and theoretical simulations 18,19,20,21,22 of vortex structures in samples with periodic pinning centers have shown that the vortices form highly ordered configurations at integer H n = nΦ 0 /S and at some fractional H p/q = p q Φ 0 /S (n,p,q being integers) matching fields, where Φ 0 = hc/2e = 2.07 · 10 −7 Gcm 2 is the flux quantum, and S is the area of the primitive cell of the artificial lattice.…”