We have measured the in-plane anisotropy of the vortex mobility in a thin Pb film with a square array of antidots. The Lorentz force, acting on the vortices, was rotated by adding two perpendicular currents and keeping the amplitude of the net current constant. One set of voltage probes was used to detect the vortex motion. We show that the pinning landscape provided by the square antidot lattice influences the vortex motion in two different ways. First, the modulus of the vortex velocity becomes angular dependent with a lower mobility along the diagonals of the pinning array. Second, the vortex displacement is preferentially parallel to the principal axes of the underlying pinning lattice, giving rise to a misalignment between the vortex velocity and the applied Lorentz force. We show that this anisotropic vortex motion is temperature dependent and progressively fades out when approaching the normal state.
We explore the flux-jump regime in type-II Pb thin films with a periodic array of antidots by means of magneto-optical measurements. A direct visualization of the magnetic flux distribution allows us to identify a rich morphology of flux penetration patterns. We determine the phase boundary H * ͑T͒ between dendritic penetration at low temperatures and a smooth flux invasion at high temperatures and fields. For the whole range of fields and temperatures studied, guided vortex motion along the principal axes of the square pinning array is clearly observed. In particular, the branching process of the dendrite expansion is fully governed by the underlying pinning topology. A comparative study between macroscopic techniques and direct local visualization sheds light onto the puzzling T-and H-independent magnetic response observed at low temperatures and fields. Finally, we find that the distribution of avalanche sizes at low temperatures can be described by a power law with exponent ϳ 0.9͑1͒.
We performed ac susceptibility measurements to explore the vortex dynamics and the flux-pinning properties of superconducting Pb films with an array of microholes (antidots) and not fully perforated holes (blind holes). A lower ac shielding together with a smaller extension of the linear regime for the lattice of blind holes indicates that these centers provide a weaker pinning potential than antidots. Moreover, we found that the maximum number of flux quanta trapped by a pinning site, i.e., the saturation number n s , is lower for the blind hole array.
The use of artificial defects is known to enhance the superconducting critical parameters of thin films. In the case of conventional superconductors, regular arrays of submicron holes ͑antidots͒ substantially increase the critical temperature T c ͑H͒ and critical current I c ͑H͒ for all fields. Using electrical transport measurements, we study the effect of placing an additional small antidot in the unit cell of the array. This composite antidot lattice consists of two interpenetrating antidot square arrays with a different antidot size and the same lattice period. The smaller antidots are located at the centers of the cells of the large antidots array. We show that the composite antidot lattice can trap a higher number of flux quanta per unit cell inside the antidots compared to a reference antidot film without the additional small antidots. As a consequence, the field range in which an enhanced critical current is observed is considerably expanded. Finally, the possible stable vortex lattice patterns at several matching fields are determined by molecular-dynamics simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.