In this paper, a novel polarization parametric indirect microscopic imaging (PIMI) method is utilized for the first time to characterize the near-field emission mode and end-face structure of nanoscale semiconductor light-emitting chips. Via polarization modulation and detection of the emitted light from an SLD chip, abundant information including the distinct border of the emission mode, which cannot be seen by the traditional method, is collected and visualized as the form of multi-dimensional photon state distribution images. The polarization property distribution of the emission mode was visualized for the first time. Besides, by concurrent analysis of PIMI images of the end-face structure and emission mode, potential impurities adhered to the emitting facet can be precisely screened and located. The proposed method here has considerable advantages in the characterization of the light-emitting devices, paving a new way for precise, convenient, cost-effective, and large-scale quality inspection in industries.