Collider searches for long-lived particles yield a promising avenue to probe the freeze-in production of Dark Matter via the decay of a parent particle. We analyze the prospects of probing the parameter space of Dark Matter freeze-in from the decay of neutral parent particles at the LHC and beyond, taking as a case study a freeze-in Dark Matter scenario via the Standard Model Higgs. We obtain the projected sensitivity of the proposed MATHUSLA surface detector (for MATHUSLA100 and MATHUSLA200 configurations) for long-lived particle searches to the freeze-in Dark Matter parameter space, and study its complementarity to searches by ATLAS and CMS at HL-LHC, as well as the interplay with constraints from Cosmology: Big-Bang Nucleosynthesis and Lyman-α forest observations. We then analyze the improvement in sensitivity that would come from a forward detector within a future 100 TeV pp-collider. In addition, we discuss several technical aspects of the present Dark Matter freeze-in scenario: the role of the electroweak phase transition; the inclusion of thermal masses, which have been previously disregarded in freeze-in from decay studies; the impact of 2 → 2 scattering processes on the Dark Matter relic abundance; and the interplay between freeze-in and super-WIMP Dark Matter production mechanisms.1 The inverse processes are absent due to the small DM abundance w.r.t. equilibrium densities and to the feeble coupling between DM and the thermal bath.2 This is commonly known as infrared freeze-in. For other possibilities, see e.g. [20,21].3 See e.g. [22], although see [17,23,24] for recent phenomenological probes of freeze-in through a portal.