2003
DOI: 10.3141/1853-01
|View full text |Cite
|
Sign up to set email alerts
|

Forecasting Overall Pavement Condition with Neural Networks: Application on Florida Highway Network

Abstract: Timely identification of undesirable crack, ride, and rut conditions is a critical issue in pavement management systems at the network level. The overall pavement surface condition is determined by these individual pavement surface conditions. A research project was carried out to implement an overall methodology for pavement condition prediction that uses artificial neural networks (ANNs). In the research, three ANN models were developed to predict the three key indices—crack rating, ride rating, and rut rati… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

1
24
0
3

Year Published

2008
2008
2022
2022

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 61 publications
(28 citation statements)
references
References 3 publications
1
24
0
3
Order By: Relevance
“…The development of forecasting models that are capable of describing and predicting pavement performance accurately is critical for these agencies (Bianchini and Bandini 2010), and accurate predictions of pavement performance based on the periodic observations are vital for determining desirable maintenance actions and budget allocations (Pan et al 2011). Improved accuracy of pavement performance models can make a significant difference in the expenditure on pavement maintenance and rehabilitation (Yang et al 2002). Predicting the performance of a pavement to estimate its deterioration process is a very difficult task and is strongly related to the assessment of the pavement condition and serviceability level (Yang et al 2002, Bianchini andBandini 2010).…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…The development of forecasting models that are capable of describing and predicting pavement performance accurately is critical for these agencies (Bianchini and Bandini 2010), and accurate predictions of pavement performance based on the periodic observations are vital for determining desirable maintenance actions and budget allocations (Pan et al 2011). Improved accuracy of pavement performance models can make a significant difference in the expenditure on pavement maintenance and rehabilitation (Yang et al 2002). Predicting the performance of a pavement to estimate its deterioration process is a very difficult task and is strongly related to the assessment of the pavement condition and serviceability level (Yang et al 2002, Bianchini andBandini 2010).…”
Section: Introductionmentioning
confidence: 99%
“…As a key component of a PMS, pavement performance prediction models play a critical role in providing highway agencies with decision support for their overall maintenance and budget plan (Yang et al 2002). The development of forecasting models that are capable of describing and predicting pavement performance accurately is critical for these agencies (Bianchini and Bandini 2010), and accurate predictions of pavement performance based on the periodic observations are vital for determining desirable maintenance actions and budget allocations (Pan et al 2011).…”
Section: Introductionmentioning
confidence: 99%
“…Çalışmalarda, bağımsız değişken sayısının çok olması bazı değişkenlerin sayısal değerlerle ifade edilememesi gibi sebeplerle yapay zeka tekniklerinin sıklıkla tercih edildiği görülmektedir. Araştırmacılar tarafından, sayısal ve sözel verilerin bir arada değerlendirilmesinde oldukça kolaylıklar sağlayan bulanık mantık [10][11][12] ve YSA [13][14][15][16] yaklaşımları ile her iki yöntemin bir arada kullanıldığı ANFIS yaklaşımının [17] [3]. IRI ölçümleri ve değerlendirmeleri ASTM E 950 standardında tanımlanan profilometre cihazı ile çeyrek araç sisteminin (Quarter Car System -QCS) simüle edilmesi ile sağlanmaktadır [18].…”
Section: Ayrıcaunclassified
“…Üstyapıların bakım, onarım ve iyileştirme projeleri için ayrılan bütçelerin kısıtlı olmasından dolayı, üstyapıların yönetiminden sorumlu otoriteler çoğunlukla birinci öncelikli üstyapı iyileştirme alternatiflerini uygulamak zorunda kalmaktadırlar [3]. Bu nedenle otoritelerin, sorumluluklarında bulunan üstyapıların iyileştirilmesinde doğru kararları alması ve sınırlı bütçeyi doğru şekilde kullanabilmesi için üstyapı performans tahmin modelleri hayati bir önem arz etmektedir [4].…”
Section: Introductionunclassified