The analysis of nanofluid dynamics in a bounded domain attained much attention of the researchers, engineers, and industrialists. These fluids became much popular in the researcher’s community due to their broad uses regarding the heat transfer in various industries and fluid flowing in engine and in aerodynamics as well. Therefore, the analysis of Cu-kerosene oil and Cu-water is organized between two Riga plates with the novel effects of thermal radiations and surface convection. The problem reduced in the form of dimensionless system and then solved by employing variational iteration and variation of parameter methods. For the sake of validity, the results checked with numerical scheme and found to be excellent. Further, it is examined that the nanofluids move slowly by strengthen Cu fraction factor. The temperature of Cu-kerosene oil and Cu-water significantly rises due to inducing thermal radiations and surface convection. The behaviour of shear stresses is in reverse proportion with the primitive parameters, and local Nusselt number increases due to varying thermal radiations, Biot number, and fraction factor, respectively.