Abstract. Hydrological modeling is an essential strategy for understanding natural flows, particularly where observations are lacking in either space or time, or where topographic roughness leads to a disconnect in the characteristic timescales of overland and groundwater flow. Consequently, significant opportunities remain for the development of extensible modeling systems that operate robustly across regions. Towards the development of such a robust hydrological modeling system, this paper introduces the Solver for Hydrological Unstructured Domain (SHUD), an integrated multi-process, multi-scale, multi-timestep hydrological model, in which hydrological processes are fully coupled using the Finite Volume Method. The SHUD integrates overland flow, snow accumulation/melting, evapotranspiration, subsurface and groundwater flow, and river routing, while realistically capturing the physical processes in a watershed. The SHUD incorporates one-dimension unsaturated flow, two-dimension groundwater flow, and river channels connected with hillslopes via overland flow and baseflow. This paper introduces the design of SHUD, from the conceptual and mathematical description of hydrological processes in a watershed to computational structures. To demonstrate and validate the model performance, we employ three hydrological experiments: the V-Catchment experiment, Vauclin's experiment, and a study of the Cache Creek Watershed in northern California, USA. Possible applications of then SHUD model include hydrological studies from the hillslope scale to regional scale, water resource and stormwater management, and coupling research with related fields such as limnology, agriculture, geochemistry, geomorphology, water quality, and ecology, climatic and landuse change. In general, SHUD is a valuable scientific tool for any modeling task involving simulating and understanding the hydrological response.