Abstract. Heavy precipitation events (HPEs) can lead to natural hazards (floods, debris flows) and contribute to water resources. Rainfall patterns govern HPEs effects. Thus, a correct characterisation and prediction of rainfall patterns is crucial for coping with HPEs. Information from rain gauges is generally limited due to the sparseness of the networks, especially in presence of sharp climatic gradients. Forecasting HPEs depends on the ability of weather models to generate credible rainfall patterns. This paper characterises rainfall patterns during HPEs based on high-resolution weather radar data and evaluates the performance of a high-resolution, convection-permitting, Weather Research and Forecasting (WRF) model in simulating these patterns. We identified 41 HPEs in the eastern Mediterranean from a 24-year radar record using local thresholds based on quantiles for different durations, and we ran model simulations of these events. For most durations, HPEs near the coastline are characterised by the highest rain intensities, however, for short durations, the highest rain intensities characterise the inland desert. During the rainy season, the centre-of-mass of the rain field progresses from the sea inland. Rainfall during HPEs is highly localised both in space (