A new parameter is introduced: the lightning potential index (LPI), which is a measure of the potential for charge generation and separation that leads to lightning flashes in convective thunderstorms. The LPI is calculated within the charge separation region of clouds between 0°C and −20°C, where the noninductive mechanism involving collisions of ice and graupel particles in the presence of supercooled water is most effective. As shown in several case studies using the Weather Research and Forecasting (WRF) model with explicit microphysics, the LPI is highly correlated with observed lightning. It is suggested that the LPI may be a useful parameter for predicting lightning as well as a tool for improving weather forecasting of convective storms and heavy rainfall.
Abstract. Runoff and flash flood generation are very sensitive to rainfall's spatial and temporal variability. The increasing use of radar and satellite data in hydrological applications, due to the sparse distribution of rain gauges over most catchments worldwide, requires furthering our knowledge of the uncertainties of these data. In 2011, a new superdense network of rain gauges containing 14 stations, each with two side-by-side gauges, was installed within a 4 km 2 study area near Kibbutz Galed in northern Israel. This network was established for a detailed exploration of the uncertainties and errors regarding rainfall variability within a common pixel size of data obtained from remote sensing systems for timescales of 1 min to daily. In this paper, we present the analysis of the first year's record collected from this network and from the Shacham weather radar, located 63 km from the study area. The gauge-rainfall spatial correlation and uncertainty were examined along with the estimated radar error. The nugget parameter of the inter-gauge rainfall correlations was high (0.92 on the 1 min scale) and increased as the timescale increased. The variance reduction factor (VRF), representing the uncertainty from averaging a number of rain stations per pixel, ranged from 1.6 % for the 1 min timescale to 0.07 % for the daily scale. It was also found that at least three rain stations are needed to adequately represent the rainfall (VRF < 5 %) on a typical radar pixel scale. The difference between radar and rain gauge rainfall was mainly attributed to radar estimation errors, while the gauge sampling error contributed up to 20 % to the total difference. The ratio of radar rainfall to gauge-areal-averaged rainfall, expressed by the error distribution scatter parameter, decreased from 5.27 dB for 3 min timescale to 3.21 dB for the daily scale. The analysis of the radar errors and uncertainties suggest that a temporal scale of at least 10 min should be used for hydrological applications of the radar data. Rainfall measurements collected with this dense rain gauge network will be used for further examination of small-scale rainfall's spatial and temporal variability in the coming years.
Weather radar systems provide detailed information on spatial rainfall patterns known to play a significant role in runoff generation processes. In the current study, we present an innovative approach to exploit spatial rainfall information of air mass thunderstorms and link it with a watershed hydrological model. Observed radar data are decomposed into sets of rain cells conceptualized as circular Gaussian elements and the associated rain cell parameters, namely, location, maximal intensity and decay factor, are input into a hydrological model. Rain cells were retrieved from radar data for several thunderstorms over southern Arizona. Spatial characteristics of the resulting rain fields were evaluated using data from a dense rain gauge network. For an extreme case study in a semi-arid watershed, rain cells were derived and fed as input into a hydrological model to compute runoff response. A major factor in this event was found to be a single intense rain cell (out of the five cells decomposed from the storm). The path of this cell near watershed tributaries and toward the outlet enhanced generation of high flow. Furthermore, sensitivity analysis to cell characteristics indicated that peak discharge could be a factor of two higher if the cell was initiated just a few kilometers aside.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.