We study compact, countably compact, pseudocompact, and functionally bounded sets in extensions of topological groups. A property P is said to be a three space property if, for every topological group G and a closed invariant subgroup N of G, the fact that both groups N and G/N have P implies that G also has P. It is shown that if all compact (countably compact) subsets of the groups N and G/N are metrizable, then G has the same property. However, the result cannot be extended to pseudocompact subsets, a counterexample exists under p = c. Another example shows that extensions of groups do not preserve the classes of realcompact, Dieudonné complete and μ-spaces: one can find a pseudocompact, non-compact Abelian topological group G and an infinite, closed, realcompact subgroup N of G such that G/N is compact and all functionally bounded subsets of N are finite. Several examples given in the article destroy a number of tempting conjectures about extensions of topological groups. (M. Bruguera), mich@xanum.uam.mx (M. Tkachenko).