The Eurasian-African NW-SE oblique plate convergence produces shortening and orthogonal extension in the Alboran Sea Basin (westernmost Mediterranean), located between the Betic and Rif Cordilleras. A NNE-SSW broadband of deformation and seismicity affects the Alboran central part. After the 1993-1994 and 2004 seismic series, an earthquake sequence struck mainly its southern sector in 2016-2017 (main event M w = 6.3, 25 January 2016). The near-surface deformation is investigated using seismic profiles, multibeam bathymetry, gravity and seismicity data. Epicenters can be grouped into two main alignments. The northern WSW-ENE alignment has reverse earthquake focal mechanisms, and in its epicentral region recent mass transport deposits occur. The southern alignment consists of a NNE-SSW vertical sinistral deformation zone, with early epicenters of higher-magnitude earthquakes located along a narrow band 5 to 10-km offset westward of the Al Idrisi Fault. Here near-surface deformation includes active NW-SE vertical and normal faults, unmapped until now. Later, epicenters spread eastward, reaching the Al Idrisi Fault, characterized by discontinuous active NNE-SSW vertical fractures. Seismicity and tectonic structures suggest a westward propagation of deformation and the growth at depth of incipient faults, comprising a NNE-SSW sinistral fault zone in depth that is connected upward with NW-SE vertical and normal faults. This recent fault zone is segmented and responsible for the seismicity in 1993-1994 in the coastal area, in 2004 onshore, and in 2016-2017 offshore. Insights for seismic hazard assessment point to the growth of recent faults that could produce potentially higher magnitude earthquakes than the already formed faults.