Objective: This study aimed to evaluate lenition, a phonological process involving consonant weakening, as a diagnostic marker for differentiating Parkinson’s Disease (PD) from Atypical Parkinsonism (APD). Early diagnosis is critical for optimizing treatment outcomes, and lenition patterns in stop consonants may provide valuable insights into the distinct motor speech impairments associated with these conditions. Methods: Using Phonet, a machine learning model trained to detect phonological features, we analyzed the posterior probabilities of continuant and sonorant features from the speech of 142 participants (108 PD, 34 APD). Lenition was quantified based on deviations from expected values, and linear mixed-effects models were applied to compare phonological patterns between the two groups. Results: PD patients exhibited more stable articulatory patterns, particularly in preserving the contrast between voiced and voiceless stops. In contrast, APD patients showed greater lenition, particularly in voiceless stops, coupled with increased articulatory variability, reflecting a more generalized motor deficit. Conclusions: Lenition patterns, especially in voiceless stops, may serve as non-invasive markers for distinguishing PD from APD. These findings suggest potential applications in early diagnosis and tracking disease progression. Future research should expand the analysis to include a broader range of phonological features and contexts to improve diagnostic accuracy.