2017
DOI: 10.48550/arxiv.1709.05632
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

From the Adler--Moser polynomials to the polynomial tau functions of KdV

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
2

Year Published

2021
2021
2021
2021

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(3 citation statements)
references
References 0 publications
0
1
0
2
Order By: Relevance
“…) is a homogeneous polynomial of weight 2k−1, such that the function u g (x, τ * ) satisfies the KdV hierarchy corresponding to the operator L g = ∂ 2 ∂x 2 + u g (x, τ * ). Theorem 9.8 (see [31]). The change of variables τ → τ * is described by the following relation between the generating series…”
Section: Thanksmentioning
confidence: 99%
“…) is a homogeneous polynomial of weight 2k−1, such that the function u g (x, τ * ) satisfies the KdV hierarchy corresponding to the operator L g = ∂ 2 ∂x 2 + u g (x, τ * ). Theorem 9.8 (see [31]). The change of variables τ → τ * is described by the following relation between the generating series…”
Section: Thanksmentioning
confidence: 99%
“…Теорема 9.8 (см. [31]). Замена переменных τ → τ * описывается следующим соотношением между производящими рядами:…”
Section: обозначим черезunclassified
“…В §9 мы описываем связь полиномиальных решений системы (5) с полиномами Бурхналла-Чаунди ( [23], [24]) и полиномами Адлера-Мозера ( [22], [25], [31]). § 2.…”
unclassified