In this article, we present our own construction process model consisting of 16 stages and eight phases, which is particularly applicable to large investment projects. In the context of each project phase, we examine how the appropriate way of scheduling construction processes affects the problem of the risk of prolonging individual phases and the whole project, as well as of not meeting deadlines (which is one of the main problems faced by management practitioners in the construction industry). There are many methods for assessing risk in this context, but they tend to be overly complex and rarely used by construction practitioners. On the other hand, the risks associated with potential schedule delays can be considered holistically. One tool that can serve this purpose is the combined Monte Carlo simulation and Time-at-Risk (TaR) approach, which originates from the world of finance. We show how the implementation of the process model (individual phases) and the whole project can be considered in the context of the covariance matrix between all its phases and how changes in the arrangement of these phases can affect the risk of time extension of the whole project. Our study is based on simulation data for a large development project (Fort Bema/Parkowo-Leśne housing estate complex) in Bemowo, a district of Warsaw, carried out between 1999 and 2012. The entire investment project involved the construction of almost 120,000 m2 of floor space.