DNA computing is a promising approach for dealing with biomolecular information. Although several DNA logic circuits which can evaluate biomolecular inputs have been proposed, they have serious drawbacks in the processing speed and the amount of molecules used in implementation. Here, we present optofluidic DNA computation as an effective method for constructing a DNA computing system. By confining the reaction space of DNA computation to the inside of a microdroplet and manipulating a group of droplets with external light signals, we improve usability of DNA computation as well as the processing performance. Optical manipulation is applied to transport the droplets and to initiate DNA computation by forced merging of the droplets. The proposed method has advantages over conventional DNA computation schemes in flexible operations, simultaneous multiplexed evaluation, and processing acceleration. As the first demonstration of optofluidic DNA computation, logical AND and OR operations are performed by optical manipulation of microdroplets which contain either DNA logic gates or input molecules. Also, considerable reduction in the processing time is confirmed on the optofluidic DNA computation owing to reduction of the reaction space to the microdroplet.