In this letter, we proposed a novel unsupervised learning strategy for direction-of-arrival (DOA) estimation network. Inspired by the sparse power spectrum and 1-norm optimization, we develop a novel loss function to cooperate with the estimation network. Unlike the prior DL-based methods, the proposed method does not need any manual annotations for training and validation datasets. Compared with state-of-art methods, the proposed method can automatically increase the degree of freedom of the array without further pre-processing on the covariance matrix of array observation data. Moreover, the proposed method can obtain clear spectrum and precise DOAs under harsh estimation environments.