In recent years, silver nanoparticles have been used as modern chemotherapeutic drugs to treat several cancers such as pancreatic, breast, prostate, and blood cancers. No previous reports demonstrated the in vitro anti-human pancreatic cancer effects of the novel chemotherapeutic drug formulated by silver nanoparticles containing Berberis thunbergii leaf (AgNPs). The synthesized AgNPs were characterized using different techniques including UV-vis. and FT-IR spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and TEM. All techniques approved the synthesized silver nanoparticles. The SEM and TEM exhibited a uniform spherical morphology and an average size of about 15 nm for the biosynthesized nanoparticles, respectively. The 4-(dimethylamino)benzaldehyde,2,2diphenyl-1-pikrilhydrazil (DPPH) test revealed similar antioxidant potentials for B. thunbergii leaf aqueous extract, AgNPs, and butylated hydroxytoluene.AgNPs inhibited half of the DPPH molecules in the concentration of 108 µg/mL. To survey the anti-human pancreatic cancer activities of AgNO 3 , B. thunbergii leaf aqueous extract, and AgNPs, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2Htetrazolium bromide (MTT) assay was used on common human pancreatic cancer cell lines. AgNPs had very low cell viability and anti-human pancreatic cancer effects dose-dependently against PANC-1, AsPC-1, and MIA PaCa-2. The IC50 values of the AgNPs were 259, 268, and 141 µg/mL against PANC-1, AsPC-1, and MIA PaCa-2 cell lines, respectively. It is thought that the AgNPs obtained can be used as an anticancer drug for the diagnosis of pancreatic cancer in humans after acceptance of the above findings in clinical study trials.