2016
DOI: 10.1016/j.akcej.2016.06.002
|View full text |Cite
|
Sign up to set email alerts
|

Further results on super graceful labeling of graphs

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
1

Year Published

2016
2016
2021
2021

Publication Types

Select...
5
3

Relationship

1
7

Authors

Journals

citations
Cited by 8 publications
(5 citation statements)
references
References 4 publications
0
4
0
1
Order By: Relevance
“…In [7], the authors show that every bipartite graph is an induced subgraph of an SD-prime graph. Similarly, we have Theorem 2.1.…”
Section: Resultsmentioning
confidence: 99%
“…In [7], the authors show that every bipartite graph is an induced subgraph of an SD-prime graph. Similarly, we have Theorem 2.1.…”
Section: Resultsmentioning
confidence: 99%
“…Pelabelan pada sebuah graf banyak jenisnya, ada pelabelan titik saja, ada pelabelan sisi saja, dan ada pelabelan titik dan sisi (pelabelan total). Sejak konsep pelabelan dikenalkan oleh Rosa pada 1967, terdapat lebih dari 1500 artikel yang membahas pelabelan pada graf (Gee-Choon Lau, dkk, 2016). Pelabelan anggun super atau super graceful pada graf 𝐺 adalah sebuah fungsi bijektif dari gabungan himpunan sisi dan himpunan titik graf 𝐺 ke bilangan bulat positif, sedemikian hingga untuk setiap sisi 𝑒𝑣 ∈ 𝐸(𝐺) , label sisi sama dengan nilai mutlak dari selisih label titik yang menghubungkan sisi 𝑒𝑣 .…”
Section: Pendahuluaniunclassified
“…In [4], we showed that the complete graph K n is super graceful if and only if n ≀ 3. The following result follows directly from Corollary 2.5.…”
Section: General Propertiesmentioning
confidence: 99%
“…Using a similar approach, we can also show that C 8 is not 4-super graceful. However, C 8 is 2-super graceful with consecutive vertex labels 17, 4,14,12,15,7,16,11. The corresponding edge labels are 13,10,2,3,8,9,5,6.…”
Section: Proof Formentioning
confidence: 99%