SUMMARY
The Caenorhabditis elegans spe-9 class genes, which show specific or predominant expression in the male germline, are indispensable for fertilization [1, 2]. However, due to the rapid evolution of genes involved in reproduction, we do not currently know if there are spe-9 class genes in mammals that play similar roles during fertilization to those found in C. elegans. In mice, the Izumo1 gene encodes a sperm-specific transmembrane (TM) protein with a single immunoglobulin (Ig)-like domain that is absolutely required for gamete fusion [3, 4]. In this study, we hypothesized that C. elegans has a new member of the spe-9 class genes coding for an IZUMO1-like protein. We screened C. elegans microarray data [5, 6] to identify male germline-enriched genes that encode membrane proteins with Ig-like domains. A deletion (tm3715) in one such gene (F28D1.8) caused hermaphrodites to show a male germline-dependent self-sterility, so we have named it spe-45. Mutant spe-45 worms seemed to normally undergo spermatogenesis (spermatid production by meiosis) and spermiogenesis (spermatid activation into actively motile spermatozoa). spe-45 mutant spermatozoa, however, could not complete gamete fusion, which is a characteristic of all spe-9 class mutants [1, 2]. Moreover, spe-45 self-sterile worms were rescued by a transgene expressing chimeric SPE-45 protein where its Ig-like domain was replaced by the Ig-like domain from mouse IZUMO1. Hence, C. elegans SPE-45 and mouse IZUMO1 appear to have retained a common function(s) that is required during fertilization.